Weighted dual functions for Bernstein basis satisfying boundary constraints

نویسندگان

  • Abedallah Rababah
  • Mohammad Al-Natour
چکیده

In this paper, we consider the issue of dual functions for the Bernstein basis which satisfy boundary conditions. The Jacobi weight function with the usual inner product in the Hilbert space are used. Some examples of the transformation matrices are given. Some figures for the weighted dual functions of the Bernstein basis with respect to the Jacobi weight function satisfying boundary conditions are plotted. We discuss special cases of the Jacobi weight function as the Legendre weight function and the Chebyshev weight functions of the first, second, and third kinds. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

The weighted dual functionals for the univariate Bernstein basis

We find an explicit formula for the weighted dual functions of the Bernstein polynomials with respect to the Jacobi weight function using the usual inner product in the Hilbert space L[0,1]. We define the weighted dual functionals of the Bernstein polynomials, which are used to find the coefficients in the least squares approximation. 2006 Elsevier Inc. All rights reserved.

متن کامل

Solution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions

This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method‎. ‎The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions‎. ‎By substituting these estimated functions into the cost functional‎, ‎an unconstrained nonlinear optimizat...

متن کامل

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials

Abstract. This paper proposes and applies a method to sort two-dimensional control points of triangular Bézier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bézier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit repres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2008